What is Ethernet? Types, Uses with Examples

As part of the ever-evolving digital landscape, Ethernet stands as a stalwart, connecting devices seamlessly and enabling smooth communication. Whether you are setting up a network at home or a large-scale enterprise network, it is crucial to understand Ethernet’s features, types, components, and applications. 

This blog will answer pertinent questions like ‘What is Ethernet used for?’, Ethernet networking principles, wired and wireless variations, advantages, and disadvantages.

What Is Ethernet?

Ethernet is an internet technology that enables information sharing and communication between devices on a local area network (LAN). Protocols govern how data is transmitted over various media, including cables and wireless signals. To ensure efficient transmission, Ethernet relies on the principle of packet switching. It involves breaking data into packets for efficient transmission.

Through network interface cards (NICs), devices such as computers, printers, and servers are connected to an Ethernet network and communicate by sending and receiving data packets. Each packet contains addressing information to guarantee data reaches the appropriate receiver. Ethernet has developed to support a range of speeds, from 10 Mb per second (Mbps) to 100 Gbps and even higher rates, making it appropriate for use in various applications. It provides dependable and consistent connectivity, facilitating resource sharing, teamwork, and internet access in both domestic and professional settings. 

Features of Ethernet

A popular networking technology noted for dependability and adaptability, Ethernet has the following essential attributes: 

  • CSMA/CD Protocol: Data collisions are avoided using Carrier Sense Multiple Access with Collision Detection, which requires devices to listen to the network before transmitting. 
  • Physical Media: Twisted-pair copper wires, fibre-optic cables, and coaxial cables are only a few of the physical media that Ethernet supports. 
  • Data Rates: To meet various bandwidth needs, Ethernet provides a range of data speeds, from 10 Mbps (Ethernet) to 100 Gbps and beyond.
  • Frame Structure: Data is separated into frames that include the data payload, source and destination MAC addresses, and a CRC for error checking. 
  • MAC Addresses: The proper communication between network devices is made possible by the unique MAC addresses that identify each device. 
  • Switching and Bridging: Ethernet switches and bridges improve network efficiency by passing data to intended recipients exclusively. 
  • VLAN Support: Network segmentation for improved traffic management and security is possible with virtual LANs. 
  • Ethernet over IP: Ethernet frames can be encased in IP packets to enable Ethernet communication across IP networks.

How Does Ethernet Work? 

The CSMA/CD protocol underlies how Ethernet works. A device initially listens to the network when it wants to transfer data to ensure the communication channel is open. It sends its data if it doesn’t find any other ongoing transmission. However, if two devices try to transfer data at the same time, collisions may happen. The devices cease transmitting when a collision is detected and wait for an arbitrary amount of time before trying again. By decreasing the likelihood of numerous devices broadcasting simultaneously, this collision avoidance method ensures that data transmission is efficient. 

To identify the sender and intended recipient, addressing information (MAC addresses) is included in each Ethernet data packet. Ethernet switches are essential in decreasing needless network traffic by verifying the destination address and delivering the packet only to the correct device. Switches have largely taken the position of hubs in contemporary Ethernet networks, allowing for full-duplex communication. This increases network performance and lowers collisions by allowing devices to send and receive data simultaneously.

Check out our free technology courses to get an edge over the competition.

Components Used in Ethernet

Ethernet networks rely on several critical components functioning together to permit data transfer inside a local area network (LAN):

  • Network Interface Card (NIC): NICs are hardware components found in devices like computers and servers. They let these devices communicate with the Ethernet network and send/receive data.
  • Ethernet Cables: The medium for data transfer between devices includes physical cables such as Cat5e, Cat6, and fibre-optic connections. Their speed and capabilities differ.
  • Switches: Ethernet switches are used to link various devices on a network. They intelligently route data packets to only the appropriate receiver, reducing network congestion and optimising data flow. 
  • Routers: Routers connect several networks, such as a LAN and the internet. They use IP addresses to transport data between networks, enabling devices to connect to external assets.
  • Hubs (Less Common): Hubs were formerly popular, but switches have mostly superseded them. They transmit data to all network devices, which can cause network congestion.
  • Access Points (APs): In wireless Ethernet configurations, APs act as communication hubs, allowing devices to connect to the network wirelessly.
  • Modems: When an Ethernet network connects to the internet, modems act as an intermediary between the LAN and the ISP’s network. They convert digital signals to analogue signals for transmission.

These components work together to form a working Ethernet network that allows devices to communicate, exchange resources, and connect to the Internet within a certain geographical region.

Check Out upGrad’s Software Development Courses to upskill yourself.

Read our Popular Articles related to Software Development

Types of Ethernet 

Ethernet is available in several varieties, each catering to unique networking and data transmission demands. Some notable examples of Ethernet are:

  • Ethernet over Twisted Pair (Ethernet LAN): This is the most prevalent version, with wired connections made using twisted-pair copper cables such as Cat5e, Cat6, and Cat7. Ethernet LAN may handle speeds ranging from 10 Mbps to 100 Mbps (Fast Ethernet), 1 Gbps (Gigabit Ethernet), and even higher.
  • Ethernet over Fiber (Fiber Ethernet): This form transmits data using optical fibre lines. Fibre Ethernet has a very high bandwidth and is, therefore, suited for long-distance communication. It offers higher speeds of 1 Gbps, 10 Gbps, and 40 Gbps.
  • Ethernet over Coaxial Cable (Coaxial Ethernet): Although less widespread nowadays, this kind of data transfer employs coaxial cables. It was common in previous networks but has since been completely supplanted by twisted-pair and fibre systems.
  • Power over Ethernet (PoE): This enables data transmission and electrical power over the same Ethernet communication. Power over Ethernet (PoE) is often used to power devices such as IP cameras, VoIP phones, and access points.
  • Ethernet over Wireless (Wi-Fi): While not a standard wired Ethernet type, Wi-Fi employs radio waves for wireless communication, allowing devices to link to an Ethernet connection without requiring physical connections. It is designed for mobile devices and provides various speeds based on the Wi-Fi standard.

Wired Ethernet Network vs Wireless Ethernet Network

The fundamental difference between a wired and wireless Ethernet network is in the way data is delivered between devices:

Aspect Wired Ethernet Network Wireless Ethernet Network
Speed and Reliability Offer higher speed and reliability as they use physical cables, providing consistent and stable connections. Slower and less reliable due to potential interference and signal degradation, which can result in variable speeds and occasional dropouts.
Installation and Mobility Installation is more complex and restrictive as it involves laying cables, limiting mobility and flexibility. Easier to set up, allowing for greater mobility and flexibility as devices can connect without physical constraints.
Security Considered more secure as they are not susceptible to wireless eavesdropping or hacking. Less secure, requiring strong encryption and security measures to prevent unauthorised access.
Infrastructure Cost Setting up wired networks can be costly due to the need for cables and infrastructure. Have lower initial setup costs but may require additional access points for extended coverage.

Advantages of Using Ethernet

Listed below are some benefits Ethernet offers:

  • High-Speed Data Transfer: Ethernet enables effective communication and resource sharing inside networks by providing rapid and reliable data transfer.
  • Reliability: Ethernet network wired connections result in low data loss and guarantee robust and consistent communication, which is essential for mission-critical applications.
  • Sharing of Resources: Ethernet allows for the smooth sharing of files, printers, and other resources across devices, boosting collaboration and productivity.
  • Low Latency: The low latency of Ethernet is critical for real-time applications such as online gaming, video conferencing, and industrial control systems.
  • Compatibility: Ethernet supports a wide range of devices, from PCs and servers to IoT devices, resulting in a cohesive network ecosystem.
  • Security: Compared to wireless connections, wired Ethernet connections are less vulnerable to unauthorised access, enhancing data security.
  • Scalability: Ethernet’s standardised protocols and infrastructure enable networks to scale from modest installations to massive business systems with minimal disturbance.
  • Standardisation: Ethernet adheres to internationally agreed protocols, ensuring compatibility and widespread adoption among devices and manufacturers.

Explore Our Software Development Free Courses

Disadvantages of Ethernet

Listed below are some disadvantages of using Ethernet:

  • Physical Cable Dependency: Ethernet’s wired design needs physical connections, restricting device mobility and adding clutter, particularly in dynamic situations or locations with restricted cable paths.
  • Installation Difficulty: Setting up Ethernet networks requires cable routing, infrastructure design, and sometimes drilling through walls and ceilings. This intricacy can slow down deployment.
  • Maintenance Requirements: Troubleshooting and maintaining Ethernet networks can be more time-consuming and complicated than wireless networks. Identifying cable issues, repairing broken cables, and maintaining connections require specialised knowledge.
  • Physical Obstructions: Ethernet’s reliance on cables can be hampered by physical impediments such as walls and floors, restricting network extension and layout flexibility.
  • Initial Cost: Compared to wireless options, installing Ethernet infrastructure, which includes cables, switches, and routers, may be costlier.
  • Mobility Restrictions: Because a wired Ethernet network restricts device mobility, it is unsuitable for portable devices such as laptops, tablets, and smartphones that rely on wireless communication.
  • Damage: Ethernet cables are susceptible to wear and tear, bending, and unintentional damage, which can impede network connectivity and necessitate regular replacements.
  • Adaptability Issues: As network requirements evolve, changes to the cabling infrastructure may be required, resulting in interruptions and higher costs.

Uses of Ethernet

  • Home Networking: Enables sharing resources and internet access between devices such as gaming consoles, smart TVs, and computers.
  • Office Environments: To facilitate file sharing and streamline business procedures, connect PCs, printers, and servers. 
  • Data Centers: Enables effective data management by linking servers and storage arrays in data centres. 
  • Industrial Automation: It integrates equipment, sensors, and control systems for process automation and real-time monitoring.
  • Education Institutions: Enables online study, research, and communication by supplying power to institution networks.
  • Retail Environments: Supports inventory control, customer interactions, and point-of-sale systems. 
  • Healthcare: Enables the effective connection of medical equipment, electronic medical records, and communication networks. 
  • Entertainment: Allows for media streaming across devices and online gaming. 

In-Demand Software Development Skills


Ethernet is the foundation of contemporary networking, transforming global connectivity and communication. Its transition from wired to wireless technology has eliminated barriers and allowed natural communication. Thanks to their unwavering dependability, outstanding speed, and scalable architecture, the ethernet network has a firmly established place in homes, organisations, data centres, and industries.

Despite its challenges, including installation complexities and maintenance demands, Ethernet’s advantages far outweigh its disadvantages. Connecting devices, promoting data flow in networks, enabling communication, internet connectivity, and effective resource sharing are the purposes of Ethernet. As technology advances, Ethernet will undoubtedly remain a vital thread woven into the fabric of our digital society.

What's the difference between the Internet and Ethernet?

Ethernet is a local network technology that connects devices within a limited area. The Internet is a global network of interconnected networks, including Ethernet-based ones.

What is the difference between Wi-Fi and Ethernet networks?

Ethernet provides dependable and frequently faster communications by connecting devices with physical cables. Wi-Fi is mobile and wireless. However, it can experience reduced speeds and interference.

Is Ethernet the same as LAN?

Ethernet is a type of wired networking technology, whereas LAN (Local Area Network) is a network of linked devices in a specific geographic area that frequently uses Ethernet as its core technology.

What is an example of Ethernet?

An example of Ethernet is connecting computers using Ethernet connections so they may exchange data and resources across a local network.

Which is faster, Ethernet or wireless?

Ethernet connections are faster and more reliable than wireless ones. While wireless rates can fluctuate depending on signal strength and interference, wired Ethernet communication can deliver reliable high-speed data transfer.

Want to share this article?

Leave a comment

Your email address will not be published. Required fields are marked *

Our Popular Cyber Security Course

Get Free Consultation

Leave a comment

Your email address will not be published. Required fields are marked *

Get Free career counselling from upGrad experts!
Book a session with an industry professional today!
No Thanks
Let's do it
Get Free career counselling from upGrad experts!
Book a Session with an industry professional today!
Let's do it
No Thanks