Types of Artificial Intelligence Algorithms You Should Know [A Complete Guide]

Artificial Intelligence has grown to have a significant impact on the world. With large amounts of data being generated by different applications and sources, machine learning systems can learn from the test data and perform intelligent tasks. 

Artificial Intelligence is the field of computer science that deals with imparting the decisive ability and thinking the ability to machines. Artificial Intelligence is thus a blend of computer science, data analytics, and pure mathematics.

Best Machine Learning Courses & AI Courses Online

Machine learning becomes an integral part of Artificial Intelligence, and it only deals with the first part, the process of learning from input data. Artificial Intelligence and its benefits have never ceased to amaze us.

Join the AI Courses online from the World’s top Universities – Masters, Executive Post Graduate Programs, and Advanced Certificate Program in ML & AI to fast-track your career.

In-demand Machine Learning Skills

Types of Artificial Intelligence Algorithms

Artificial intelligence algorithms can be broadly classified as :

1. Classification Algorithms

Classification algorithms are part of supervised learning. These algorithms are used to divide the subjected variable into different classes and then predict the class for a given input. For example, classification algorithms can be used to classify emails as spam or not. Let’s discuss some of the commonly used classification algorithms.

    a) Naive Bayes

Naive Bayes algorithm works on Bayes theorem and takes a probabilistic approach, unlike other classification algorithms. The algorithm has a set of prior probabilities for each class. Once data is fed, the algorithm updates these probabilities to form something known as posterior probability. This comes useful when you need to predict whether the input belongs to a given list of classes or not.

    b) Decision Tree

The decision tree algorithm is more of a flowchart like an algorithm where nodes represent the test on an input attribute and branches represent the outcome of the test.

FYI: Free Deep Learning Course!

    c) Random Forest

Random forest works like a group of trees. The input data set is subdivided and fed into different decision trees. The average of outputs from all decision trees is considered. Random forests offer a more accurate classifier as compared to Decision tree algorithm.

   d) Support Vector Machines

SVM is an algorithm that classifies data using a hyperplane, making sure that the distance between the hyperplane and support vectors is maximum.

    e) K Nearest Neighbours

KNN algorithm uses a bunch of data points segregated into classes to predict the class of a new sample data point. It is called “lazy learning algorithm” as it is relatively short as compared to other algorithms.

2. Regression Algorithms

Regression algorithms are a popular algorithm under supervised machine learning algorithms. Regression algorithms can predict the output values based on input data points fed in the learning system. The main application of regression algorithms includes predicting stock market price, predicting weather, etc. The most common algorithms under this section are 

    a) Linear regression

It is used to measure genuine qualities by considering the consistent variables. It is the simplest of all regression algorithms but can be implemented only in cases of linear relationship or a linearly separable problem. The algorithm draws a straight line between data points called the best-fit line or regression line and is used to predict new values.

Read: Linear Regression – ML Interview Questions & Answers

    b) Lasso Regression

Lasso regression algorithm works by obtaining the subset of predictors that minimizes prediction error for a response variable. This is achieved by imposing a constraint on data points and allowing some of them to shrink to zero value.

    c) Logistic Regression

Logistic regression is mainly used for binary classification. This method allows you to analyze a set of variables and predict a categorical outcome. Its primary applications include predicting customer lifetime value, house values, etc

    d) Multivariate Regression

This algorithm has to be used when there is more than one predictor variable. This algorithm is extensively used in retail sector product recommendation engines, where customers preferred products will depend on multiple factors like brand, quality, price, review etc.

    e) Multiple Regression Algorithm

Multiple Regression Algorithm uses a combination of linear regression and non-linear regression algorithms taking multiple explanatory variables as inputs. The main applications include social science research, insurance claim genuineness, behavioural analysis, etc. 

3. Clustering Algorithms

Clustering is the process of segregating and organizing the data points into groups based on similarities within members of the group. This is part of unsupervised learning. The main aim is to group similar items. For example, it can arrange all transactions of fraudulent nature together based on some properties in the transaction. Below are the most common clustering algorithms.

    a) K-Means Clustering

It is the simplest unsupervised learning algorithm. The algorithm gathers similar data points together and then binds them together into a cluster. The clustering is done by calculating the centroid of the group of data points and then evaluating the distance of each data point from the centroid of the cluster. Based on the distance, the analyzed data point is then assigned to the closest cluster. ‘K’ in K-means stands for the number of clusters the data points are being grouped into. 

    b) Fuzzy C-means Algorithm

FCM algorithm works on probability. Each data point is considered to have a probability of belonging to another cluster. Data points don’t have an absolute membership over a particular cluster, and this is why the algorithm is called fuzzy. 

    c) Expectation-Maximisation (EM) Algorithm

It is based on Gaussian distribution we learned in statistics. Data is pictured into a Gaussian distribution model to solve the problem. After assigning a probability, a point sample is calculated based on expectation and maximization equations. 

    d) Hierarchical Clustering Algorithm

These algorithms sort clusters hierarchical order after learning the data points and making similarity observations. It can be of two types

  • Divisive clustering, for a top-down approach
  • Agglomerative clustering, for a bottom-up approach

Popular Machine Learning and Artificial Intelligence Blogs

Let’s wind up and conclude

AI has startled the world multiple times and has a lot of applications in the real world to solve its complex problems. We hope this article has shed some light on the various Artificial Intelligence algorithms and their broad classifications. Algorithms are chosen based on the need and the nature of the data points we have.

Algorithms have their advantages and disadvantages in terms of accuracy, performance and processing time. These are just a few algorithms. If you are keen on learning more, check out upGrad & IIIT-B’s Executive PG Programme in Machine Learning & AI.

What is naïve bayes?

The Bayes theorem is used in the Naive Bayes algorithm, which, unlike the other algorithms on this list, takes a probabilistic approach. This simply means that the method has a set of prior probabilities established for each of the classifications for your target, rather than leaping right into the data. The algorithm changes these prior probabilities to generate the posterior probability when you feed in the data. As a result, this can be incredibly beneficial in situations when you need to anticipate whether your input corresponds to one of n classes or none of them. This is doable using a probabilistic technique because the probabilities tossed for all n classes will be quite low.

What is a decision tree?

The Decision Tree is simply a flowchart-like tree structure in which each exterior node represents a trial on an attribute and each branch indicates the test's result. The expected labels are stored in the leaf nodes. We begin at the root of the tree and work our way to the leaf node by comparing attribute values. When dealing with high-dimensional data and with little time spent on data preparation, we employ this classifier. A word of caution, however: they are prone to overfitting and can vary dramatically even with little changes in the training data.

What is a support vector machine?

In the extent that it attempts to sort the datapoints with the margins between two classes as wide as feasible, an SVM is unique. This is referred to as the maximum margin separation. Another point to keep in mind is that, unlike linear regression, SVMs plot the hyperplane using only the support vectors, whereas linear regression uses the full dataset. SVMs are particularly beneficial in circumstances when data has a lot of dimensions. So you start by generating a random hyperplane, then measuring the distance between it and the nearest data values from each class. Support vectors are the data points that are nearest to the hyperplane.

Want to share this article?

Lead the AI Driven Technological Revolution

Leave a comment

Your email address will not be published. Required fields are marked *

Our Popular Machine Learning Course

Get Free Consultation

Leave a comment

Your email address will not be published. Required fields are marked *

Get Free career counselling from upGrad experts!
Book a session with an industry professional today!
No Thanks
Let's do it
Get Free career counselling from upGrad experts!
Book a Session with an industry professional today!
Let's do it
No Thanks