Programs

12 Exciting Hadoop Project Ideas & Topics For Beginners [2023]

Hadoop Project Ideas & Topics

Today, big data technologies power diverse sectors, from banking and finance, IT and telecommunication, to manufacturing, operations and logistics. Most of the Hadoop project ideas out there focus on improving data storage and analysis capabilities. With Apache Hadoop frameworks, modern enterprises can minimize hardware requirements and develop high-performance distributed applications.

Read: Apache Spark vs Hadoop Mapreduce

Introducing Hadoop

Hadoop is a software library designed by the Apache Foundation to enable distributed storage and processing of massive volumes of computation and datasets. This open-source service supports local computing and storage can deal with faults or failures at the application layer itself. It uses the MapReduce programming model to bring the benefits of scalability, reliability, and cost-effectiveness to the management of large clusters and computer networks. 

Why Hadoop projects

Apache Hadoop offers a wide range of solutions and standard utilities that deliver high throughput analysis, cluster resource management, and parallel processing of datasets. Coming to Hadoop tools, here are some of the modules supported by the software:

  • Hadoop MapReduce
  • Hadoop Distributed File System or HDFS
  • Hadoop YARN

Note that technology companies like Amazon Web Services, IBM Research, Microsoft, Hortonworks, and many others deploy Hadoop for a variety of purposes. It is an entire ecosystem replete with features that allow users to acquire, organize, process, analyze, and visualize data. So, let us explore the system tools through a set of exercises. 

Explore Our Software Development Free Courses

Hadoop Project Ideas For Beginners

1. Data migration project

Before we go into the details, let us first understand why you would want to migrate your data to the Hadoop ecosystem.

Present-day managers emphasize on using technological tools that assist and improve decision-making within dynamic market environments. While legacy software like a relational database management system (RDBMS) help store and manage data for business analysis, they pose a limitation when a more substantial amount of data is involved.

It becomes challenging to alter tables and accommodate big data with such traditional competencies, which further affects the performance of the production database. Under such conditions, smart organizations prefer the toolsets offered by Hadoop. Its powerful commodity hardware can significantly capture insights for massive pools of data. This is particularly true for operations like Online Analytical Processing or OLAP. 

Now, let us see how you can migrate RDBMS data to Hadoop HDFS. 

You can use Apache Sqoop as an intermediate layer to import data from a MySQL to the Hadoop system, and also to export data from HDFS to other relational databases. Sqoop comes with Kerberos security integration and Accumulo support. Alternatively, you can use the Apache Spark SQL module if you want to work with structured data. Its fast and unified processing engine can execute interactive queries and streaming data with ease. 

2. Corporate data integration

When organizations first replace centralized data centers with dispersed and decentralized systems, they sometimes end up using separate technologies for different geographical locations. But when it comes to analytics, it makes sense for them to want to consolidate data from multiple heterogeneous systems (often from different vendors). And herein comes the Apache Hadoop enterprise resource with its modular architecture. 

For example, its purpose-built data integration tool, Qlick (Attunity), helps users configure and execute migration jobs via a drag-and-drop GUI. Additionally, you can freshen up your Hadoop data lakes without hindering the source systems. 

Check out: Java Project Ideas & Topics for Beginners

3. A use case for scalability 

Growing data stacks mean slower processing times, which hampers the procedure of information retrieval. So, you can take up an activity-based study to reveal how Hadoop can deal with this issue. 

Apache Spark—running on top of the Hadoop framework to process MapReduce jobs simultaneously—ensures efficient scalability operations. This Spark-based approach can help you to get an interactive stage for processing queries in near real-time. You can also implement the traditional MapReduce function if you are just starting with Hadoop. 

Explore our Popular Software Engineering Courses

4. Cloud hosting

In addition to hosting data on on-site servers, Hadoop is equally adept at cloud deployment. The Java-based framework can manipulate data stored in the cloud, which is accessible via the internet. Cloud servers cannot manage big data on their own without a Hadoop installation. You can demonstrate this Cloud-Hadoop interaction in your project and discuss the advantages of cloud hosting over physical procurement. 

5. Link prediction for social media sites

The application of Hadoop also extends to dynamic domains like social network analysis. In such advanced scenarios where variables have multiple relationships and interactions, we require algorithms to predict which nodes could be connected. Social media is a storehouse of links and inputs, such as age, location, schools attended, occupation, etc. This information can be used to suggest pages and friends to users via graph analysis. This process would involve the following steps:

  • Storing nodes/edges in HBase
  • Aggregating relevant data 
  • Returning and storing intermediate results back to HBase
  • Collecting and processing parallel data in a distributed system (Hadoop)
  • Network clustering using k-means or MapReduce implementations

You can follow a similar method to create an anomaly predictor for financial services firms. Such an application would be equipped to detect what types of potential fraud particular customers could commit. 

6. Document analysis application

With the help of Hadoop and Mahout, you can get an integrated infrastructure for document analysis. The Apache Pig platform matches the needs, with its language layer, for executing Hadoop jobs in the MapReduce and achieving a higher-level abstraction. You can then use a distance metric to rank the documents in text search operations. 

7. Specialized analytics

You can select a project topic that addresses the unique needs of a specific sector. For instance, you can apply Hadoop in the Banking and Finance industry for the following tasks:

  • Distributed storage for risk mitigation or regulatory compliance
  • Time series analysis
  • Liquidity risk calculation
  • Monte Carlo simulations 

Hadoop facilitates the extraction of relevant data from warehouses so that you can perform a problem-oriented analysis. Earlier, when proprietary packages were the norm, specialized analytics suffered challenges related to scaling and limited feature sets. 

8. Streaming analytics

In the fast-paced digital era, data-driven businesses cannot afford to wait for periodic analytics. Streaming analytics means performing actions in batches or a cyclical manner. Security applications use this technique to track and flag cyber attacks and hacking attempts. 

In the case of a small bank, a simple combination of Oracle and VB code could run a job to report abnormalities and trigger suitable actions. But a statewide financial institution would need more powerful capabilities, such as those catered by Hadoop. We have outlined the step-by-step mechanism as follows:

  • Launching a Hadoop cluster
  • Deploying a Kafka server
  • Connecting Hadoop and Kafka
  • Performing SQL analysis over HDFS and streaming data 

Read: Big Data Project Ideas & Topics 

In-Demand Software Development Skills

9. Streaming ETL solution

As the title indicates, this assignment is about building and implementing Extract Transform Load (ETL) tasks and pipelines. The Hadoop environment contains utilities that take care of Source-Sink analytics. These are situations where you need to Capture streaming data and also warehouse it somewhere. Have a look at the tools below.

  • Kudu
  • HDFS
  • HBase
  • Hive

10. Text mining using Hadoop

Hadoop technologies can be deployed for summarizing product reviews and conducting sentiment analysis. The product ratings given by customers can be classified under Good, Neutral, or Bad. Furthermore, you can bring slangs under the purview of your opinion mining project and customize the solution as per client requirements. Here is a brief overview of the modus operandi:

  • Use a shell and command language to retrieve HTML data
  • Store data in HDFS
  • Preprocess data in Hadoop using PySpark
  • Use an SQL assistant (for example, Hue) for initial querying
  • Visualize data using Tableau

11. Speech analysis 

Hadoop paves the way for automated and accurate speech analytics. Through this project, you can showcase the telephone-computer integration employed in a call center application. The call records can be flagged, sorted, and later analyzed to derive valuable insights. A combination of HDFS, MapReduce, and Hive combination works best for large-scale executions. Kisan Call Centers operating across multiple districts in India form a prominent use case.  

12. Trend analysis of weblogs

You can design a log analysis system capable of handling colossal quantities of log files dependably. A program like this would minimize the response time for queries. It would work by presenting users’ activity trends based on browsing sessions, most visited web pages, trending keywords, and so on. 

Also read: How to Become a Hadoop Administrator

13. Predictive Maintenance for Manufacturing

Minimizing downtime and improving equipment performance are crucial in the industrial sector. Making a predictive maintenance system is a simple Hadoop project concept. You may anticipate equipment failure and plan maintenance in advance by gathering and analyzing sensor data from the gear. This decreases downtime while also saving money by averting costly catastrophic failures.

14. Healthcare Analytics

From patient records and diagnostic pictures to research data, the healthcare industry creates enormous volumes of data. Beginners might start a Hadoop project to examine medical records. You may look at things like predicting patient outcomes, finding illness outbreaks or getting recommendations for certain medicines. You may effectively handle and analyze huge medical datasets by utilizing Hadoop’s distributed computing capabilities.

15. Retail Inventory Optimization

Retailers must effectively manage their inventory to prevent either overstocking or understocking of items. A Hadoop project for beginners can entail developing an inventory optimization system. You may create algorithms that assist merchants in making data-driven choices about inventory management by examining historical sales data and external factors like seasonality and promotions.

16. Natural Language Processing (NLP)

Beginners may use Hadoop in the exciting subject of NLP. You may create text analytics programs for chatbots, sentiment analysis, or language translation. You may analyze massive text datasets to gain insightful information and enhance language-related applications by utilizing Hadoop’s parallel processing.

17. Energy Consumption Analysis

Global energy usage is a serious issue. The analysis of energy consumption data from multiple sources, including smart meters, weather information, and building information, might be the subject of a Hadoop project. Consumers and organizations may improve their energy use and cut expenses by spotting trends and anomalies.

18. Recommender Systems

Many industries, including e-commerce, content streaming, and others, employ recommender systems. You may use Hadoop to create a recommendation engine as a beginner’s project. You may create algorithms that propose goods or material catered to specific consumers.

19. Environmental Data Monitoring

Environmental problems and climate change are major world concerns. Collecting and analyzing environmental data from sensors, satellites, and weather stations might be the focus of a Hadoop project for beginners. To track environmental changes, such as temperature patterns, pollution levels, and wildlife movements, you may develop visualizations and prediction algorithms.

20. Supply Chain Optimization

Management of the supply chain is essential for companies to ensure effective product delivery. Supply chain operation optimization is a Hadoop project idea. You may create algorithms that improve supply chain efficiency and save costs by evaluating data on supplier performance, transportation routes, and demand changes.

Read our Popular Articles related to Software Development

Conclusion

These Hadoop projects provide possibilities for hands-on learning about various aspects of Hadoop in big data analytics.

With this, we have answered ‘What is big data Hadoop?’ and covered the top Hadoop project ideas. You can adopt a hands-on approach to learn about the different aspects of the Hadoop platform and become a pro at crunching big data!

If you are interested to know more about Big Data, check out our If you are interested to know more about Big Data, check out our Advanced Certificate Programme in Big Data from IIIT Bangalore. which is designed for working professionals and provides 7+ case studies & projects, covers 14 programming languages & tools, practical hands-on workshops, more than 400 hours of rigorous learning & job placement assistance with top firms.

Learn Software Development Courses online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs or Masters Programs to fast-track your career.

What are different types of Data Migration?

As the name suggests, Data Migration involves transferring data from one location to another, one data format to another, or from one application to another. Data migration is generally needed when companies move their on-premises applications to Cloud-based systems, when there is a need to upgrade storage systems, when data centre relocation is required, etc. There are 3 types of data set migration: Storage migration, which involves moving data from one storage location to another; Application Migration, which consists of transferring data from one computing environment to another; and Cloud migration, which involves transferring data from one Cloud storage to another or from the on-premises data centre to the Cloud.

What were the limitations of Hadoop 1.0?

Hadoop 2.0 was launched as an improvement over Hadoop 1.0 because the first version suffered from many drawbacks. Hadoop 1.0 does not facilitate the batch procession of vast amounts of data already present in the Hadoop system. The maximum node cluster supported by Hadoop 1.0 is only 4000. Furthermore, there is only one Name node and Namespace per cluster. It is a single-purpose system which can only be run on MapReduce based jobs. This is why Hadoop 2.0 is becoming famous, as many limitations have been corrected in the second version.

What is the average salary of a Hadoop Administrator?

The rise of Big Data has also led to the popularity of the Hadoop framework. Many job opportunities are created in the field. One of which is the Hadoop Administrator. Their job responsibilities are numerous. Some of which include managing the Hadoop clusters, data modelling, recovery of the database, etc. They are paid a handsome salary for their contribution to the field of Big Data. The average salary of a Hadoop Administrator is INR 7.5 LPA. The number varies greatly with the experience, job location, expertise, company, etc.

Want to share this article?

Master The Technology of the Future - Big Data

Leave a comment

Your email address will not be published. Required fields are marked *

Our Popular Big Data Course

Get Free Consultation

Leave a comment

Your email address will not be published. Required fields are marked *

×
Get Free career counselling from upGrad experts!
Book a session with an industry professional today!
No Thanks
Let's do it
Get Free career counselling from upGrad experts!
Book a Session with an industry professional today!
Let's do it
No Thanks