Big Data has become an integral part of any business for improving decision making and gaining a competitive edge over others. Therefore, Big Data technologies, such as Apache Spark and Cassandra are in high demand. Companies are looking for professionals who are skilled in using them to make the most out of the data generated within the organization.
These data tools help in handling huge data sets and identifying patterns and trends within them. So, if you are planning to get into the Big Data industry, you have to equip yourself with these tools.
We will check out the most popular Big Data technologies in this article.
Check out the scope of a career in big data.
Check out our free courses to get an edge over the competition.
Big Data Tools & Technologies
1. Apache Storm
Apache Storm is a real-time distributed tool for processing data streams. It is written in Java and Clojure, and can be integrated with any programming language. The software was developed by Nathan Marz and was later acquired by Twitter in 2011. The basic features of Storm are as follows:
- Has massive scalability
- It can process over a million jobs on the node within fractions of seconds
- Real-time data processing
- Storm topology runs until the user shuts it down or an unexpected technical failure occurs
- It guarantees the processing of every tuple
- It can run on JVM (Java Virtual Machine)
- Apache Storm supports (DAG) Direct Acrylic Graph topology
- Being open-source, flexible and robust, it can be used by medium and large-scale organizations
- It has low latency. Performs end-to-end delivery response and data refresh in seconds, depending on the data problem
- Storm guarantees data processing even if the messages are lost or nodes of the cluster die
The Apache Storm topologies are like a MapReduce job. But, here the data is processed in real-time instead of batch processing in Apache Spark.
Learn: Mapreduce in big data
Storm UI daemon offers you a REST API through which you can do the following:
- Interact with the Storm cluster and obtain metrics data
- Start/stop topologies and configure information
- Even if a failure happens, each node is processed at least once
All this make Storm one of the leading Big Data technologies at present.
Check out the best big data courses at upGrad
Explore our Popular Software Engineering Courses
2. MongoDB
This is an open-source NoSQL database that is an advanced alternative to modern databases. It is a document-oriented database used for storing large volumes of data. Instead of rows and columns used in traditional databases, you will make use of documents and collections.
Documents consist of key-value pairs and the collections have function and document sets. MongoDB is ideal for companies who need to take quick decisions and want to work with real-time data. The Big Data technology is commonly used for storing data obtained from mobile applications, product catalogues and content management systems.
Knowledge Read: Big data Career transition
Some of the most popular reasons for getting started with MongoDB are:
- As it stores data in documents, it is very flexible and can be easily adapted by companies
- It supports many ad-hoc queries, such as searching by a field name, regular expressions and range queries. You can execute queries for returning fields in a document
- All fields of a MongoDB document can be indexed for enhancing the quality of searches
- It is great at load balancing as it splits data across MongoDB instances. The technology can run on several servers, and also duplicates data for load balancing in case a technical failure occurs
- You can store data of any type, such as integer, strings, Booleans, arrays and objects
- As this technology uses dynamic schemas, you can store and prepare data quickly, thus saving cost. Learn more about the real time applications of MongoDB.
Read: Big Data Salary in India
3. Cassandra
Cassandra is a distributed database management system that is used for handling large volumes of data across several servers. This is one of the most popular Big Data technologies which is preferred for processing structured data sets. It was first developed by Facebook as a NoSQL solution. It is now used by corporate giants, such as Netflix, Twitter and Cisco.
The most exciting features of Cassandra include:
- It provides an easy to use query language, so it will be hassle-free if you want to transition from a relational database to Cassandra
- Its Masterclass architecture allows data to be read and written on any node
- Data is replicated on different nodes, so there is no single point of failure. Even if a node fails to work, data stored on other nodes will be available for use
- Data can also be replicated across multiple data centres. So, if data is lost or damaged in one data centre, it can be retrieved from other data centres
- It has built-in security features, such as restore mechanisms and data backup
- This tool allows the detection and recovery of failed nodes
Cassandra is now widely used in IoT real world applications where huge streams of data are coming from devices and sensors. It is widely used for social media analytics and while handling customer data.
Explore Our Software Development Free Courses
4. Cloudera
Cloudera is one of the fastest and most secure Big Data technologies out there right now. It was initially developed as an open-source Apache Hadoop distribution that was aimed at enterprise-class deployments. This scalable platform allows you to get data from any environment very easily.
The best features why choosing Cloudera will be great for your project are:
- Offers real-time insights for data monitoring and detection
- You can deploy Cloudera Enterprise across various cloud platforms, such as AWS, Google Cloud and Microsoft Azure
- Cloudera has the capability of developing and training data models
- You can spin or terminate data clusters. This allows you to pay for only what you need and when you require it
- Offers an enterprise-level hybrid cloud solution
Cloudera offers software, support and service in five bundles that are available across multiple cloud providers and on-premise:
- Cloudera Enterprise Data Hub
- Cloudera Analytic DB
- Cloudera Operational DB
- Cloudera Data Science and Engineering
- Cloudera Essentials
Read: Big data jobs and its career opportunities
In-Demand Software Development Skills
5. OpenRefine
OpenRefine is a powerful Big Data tool that is used for cleaning data and converting it into different formats. You can explore huge data sets using this tool comfortably. The prominent features of this tool are:
- You can extend your data set to various web services
- Import data in different formats
- Handle cells with multiple data values and perform cell transformations
- You can use Refine Expression Language to perform advanced data operations
- The tool allows you to explore huge data sets easily within a matter of seconds
Also Read: Hadoop Tools to Make Your Big Data Journey Easy
Read our Popular Articles related to Software Development
Why Learn to Code? How Learn to Code? | How to Install Specific Version of NPM Package? | Types of Inheritance in C++ What Should You Know? |
Conclusion
The Big Data technologies discussed here will help any company to increase its profits, understand its customers better and develop quality solutions. And the best part is, you can start learning these technologies from the tutorials and resources available on the Internet.
If you are interested to know more about Big Data, check out our Advanced Certificate Programme in Big Data from IIIT Bangalore.
Learn Software Development Courses online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs or Masters Programs to fast-track your career.
What are the upcoming Big Data tools and technology trends?
The first is Cloud solutions. Artificial Intelligence and the Internet of Things have expanded massively in the coming years. This gives businesses the privilege to conduct their work swiftly. Applications that revolve around IoT will use scalable and cloud-based solutions to adjust to large chunks of data. Secondly, the speed at which data is stored, processed, and delivered will multifold, helping deliver analytical options. Big Data technologies such as Apache Spark, Apache Kafka, etc., are fast-paced and will help companies use the same feature in the future. Finally, we can expect Big Data tools to break down complex processes like data distribution, data cleaning, and data preparation. The tools will minimize the complexities and reduce manual effort.
What are the advantages of Apache Storm?
Apache Storm is regarded as the “Hadoop for real-time execution, especially in businesses and growing industries”. Apache Storm has waived its way to evolve through the existing capabilities and has also fastened the traditional approach in data analytics. Moreover, it is capable of processing 1 million messages, each of 100 bytes, using a single node. Regardless of failure, every node executes at least once. Another big advantage of Apache Storm is its scalability. Users can run multiple calculations simultaneously with applied load and fast speed. It is a perfect fit for production using its authentic configuration.
How will Big Data tools help in career growth?
Big Data tools are currently trending and sit on the top of the throne in software industries. Their applications have spread across every sector, including finance, social media, telecommunication, and weather forecasting. This is reason enough for businesses to opt for such demanding tools in the present time. Currently, Big Data tools professionals are in high demand. More than 3,500 jobs are available for Apache Storm experts. Individuals are also taking a keen interest in learning Big Data tools and technologies to contribute to the continuous demands that will reach their peak in years to come.