Anova Two Factor with Replication [With Comparison]

 Regarding statistical analysis, I’ve found Analysis of Variance (ANOVA) to be an invaluable tool. It allows me to understand the variance of variables and determine their impact on the outcome. Anova helps me test hypotheses by confirming or eliminating the null hypothesis, which suggests no relationship between the variables under study. 

Before diving into the intricacies of Anova two-factor with replication, I believe it’s crucial to grasp the basic concept of Anova. This foundational understanding sets the stage for a deeper exploration of Anova’s applications and how they can be effectively used in different analytical scenarios. 


Anova is a statistical concept, and no statistics holds without numbers. Anova requires a certain number through which it can analyze the null hypothesis that we pose at the start of the analysis. The three critical values for this calculation are F ratios and F-critical, with some significance values. Now here we will not go much into the detailed mathematical computation, but we will address the conceptual parts with examples.

The significance of a particular variable or entity is calculated by comparing the values with the overall impact on the target value. For example, X’s significance will be more on A, if even a small change in X can affect in changing the value of A. The F ratios are calculated by the Mean sum of squares of an entity and the mean sum of residuals squares. The mean sum of squares is calculated by dividing the mean sum of squares by the degree of freedom. The degree of freedom is the number of possible cases of the nominal variable, minus one.

F critical is based on the significance values. F ratios are calculated manually through the process explained above. The validity of the hypothesis is dependent on the values of F ratios and F critical. Here are the cases:

· If the F-critical > F ratio, then the hypothesis holds, and there is no relation between the variables under observation

· If the F-critical < F ratio, then the hypothesis can be declared invalid, and in turn, supports the idea that the variables affect each other.

Read: Top 10 Highest Paying Data Science Jobs in India

Difference between One-way and two-way

As mentioned, here, we discuss the concept of Anova two-factor with replication. But what exactly is the difference between one-factor and two-factor? Anova one-factor deals with only one nominal variable (A variable that has two or more classes or categories, but the order of categories is not crucial. For example, gender is a nominal variable with classes male and female).

Learn data science certification courses from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.

However, Anova two-factor deals with two nominal variables. As the variables are fewer, there is also a change in the number of the null hypothesis in both the types of analysis. The hypotheses in two-way Anova are as follows:

· The means of observation by one variable is the same. Meaning, variable one does not affect the target value in any way.

· The means of observation by the other variable is the same. Meaning, variable two does not affect the target value in any way.

Our learners also read: Free excel courses!

· There is no interaction between the variable one and variable two.

In one-way Anova, there is a null hypothesis and an alternative hypothesis. First, the means by the variable is the same, and second, the means by the other variable is the same.

To understand more clearly, let us take the help of an example.

Example #1

SID High Noise SID Medium Noise SID Low Noise
S1 23 S5 23 S9 39
S2 45 S6 64 S10 43
S3 34 S7 73 S11 26
S4 46 S8 48 S12 11

The table shows the marks of different students in the presence of a different range of noises. In a one-way anova, only one nominal variable is there. Here, the nominal variable is noise. So, the hypothesis will try to check if noise has a significant effect on the marks of students or not.

Let us take another table:

Student High Noise Medium Noise Low Noise
Male 13 24 29
12 23 45
11 32 33
4 11 33
Female 16 17 56
12 24 34
8 23 23
3 29 67

Now in this table, the marks are shown with categories of students. Hence, we have two nominal variables, the gender of the student and the noise level. Here, there can be two-factor analysis, which will be done using three hypotheses.

But now what exactly is meant by Anova two-factor with replication?

Also Read: Data Science Project Ideas

upGrad’s Exclusive Data Science Webinar for you –

How upGrad helps for your Data Science Career?

Top Data Science Skills to Learn

Difference between with-replication and without-replication

The fundamental difference between Anova two-factor with replication and without replication is that the sample size is different. In the technique with-replication, the total number of samples is mostly uniform. If that is the case, the means are calculated independently. This type of data is also known as balanced data. But if the sample size is not uniform, the analysis is difficult. It is better to get the sample size uniform to get faster results.

Explore our Popular Data Science Courses

In the technique without replication, the sample observation size is one. It means that there is only a single observation for each combination of nominal variables. Here, the analysis can be done using the means of both the variables as well as the total mean of considering every observation as a single cluster. The F-ratio can then be calculated by the remainder mean and the total mean.

Check out: Top 12 Python Libraries for Data Science 


 So, that’s how Anova two-factor with replication operates. There are many complex calculations in statistics, but a clear understanding of the concepts simplifies things. We covered the basics of Anova, including its concept, two-way ANOVA, and replication criteria. I hope this article has shed enough light on how the Anova two-factor works with replication, empowering you to explore it further on your own. 

If you’re interested in delving into data science, I recommend checking out the Executive PG Program in Data Science by IIIT-B & upGrad. Tailored for working professionals, this program offers 10+ case studies & projects, hands-on workshops, mentorship from industry experts, 1-on-1 sessions with mentors, over 400 hours of learning, and job assistance with leading firms. 

Read our popular Data Science Articles

Is the t-test the same as the Anova?

The t-test examines if two populations are statistically distinct, whereas the Anova tests whether three or more populations are statistically dissimilar. For comparing the means of two groups, the t-test is employed, but the Anova is used when comparing the means of three or more groups. In Anova, the first step is to find a common P value. A significant P value in the Anova test indicates that the mean difference between at least one pair was statistically significant.

In Anova, how do you accept or reject the null hypothesis?

The typical interpretation is that the data is statistically significant when the p-value is less than the significance level, and you reject H 0. When there is enough information to identify that not all of the means are equal, we may reject the null hypothesis in one-way Anova.

In Anova, how do you interpret the F value?

The significance of F is the probability that the null hypothesis of your regression model cannot be rejected. To put it another way, it indicates the probability that all of the coefficients in your regression result are zero! The difference between two mean square values is equivalent to the F ratio. If the null hypothesis is accurate, F should be close to 1.0 the vast majority of the time. A high F ratio implies that group mean variance is higher than would be anticipated by chance.

Want to share this article?

Prepare for a Career of the Future

Leave a comment

Your email address will not be published. Required fields are marked *

Our Popular Data Science Course

Get Free Consultation

Leave a comment

Your email address will not be published. Required fields are marked *

Get Free career counselling from upGrad experts!
Book a session with an industry professional today!
No Thanks
Let's do it
Get Free career counselling from upGrad experts!
Book a Session with an industry professional today!
Let's do it
No Thanks